Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Heliyon ; 10(3): e25499, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38333854

RESUMO

The extract of mulberry leaf and its active ingredients have already been reported to have anti-diabetic effects; however, further studies are required to obtain better quality extracts and higher yields of active ingredients. Reducose® is a commercially available aqueous extract of mulberry leaves with a high content of active ingredients. In this study, the biological activities of Reducose®, 1-deoxynojirimycin, and l-leucine were evaluated using a glucose-stimulated insulin secretion (GSIS) assay. The GSIS assay results were expressed as the glucose-stimulated index (GSI). Considering the pharmacological safety in pancreatic ß-cells, the appropriate non-toxic concentrations were selected by screening for cytotoxicity of Reducose®, 1-deoxynojirimycin, and l-leucine before the GSIS assay. The effect of Reducose®, 1-deoxynojirimycin, and l-leucine on glucose-stimulated insulin secretion in INS-1 cells was compared. Reducose®, 1-deoxynojirimycin, and l-leucine increased the GSI values more effectively than gliclazide (positive control). This was associated with an increase in protein expression, such as peroxisome proliferator-activated receptor-γ, insulin receptor substrate-2, activated pancreatic and duodenal homeobox-1, which are related to the regulation of pancreatic ß-cell function and survival. In order to elucidate the effect of Reducose® in anti-diabetic effects, blood glucose levels, insulin levels, and liver and lipid concentrations were investigated in a Sprague-Dawley rat model of high-fat diet/streptozotocin-induced diabetes. We observed that administration of Reducose® can decrease fasting blood glucose levels and reduce the production of AST, ALT, TG, and TC to a similar extent as metformin (positive control). These results suggested that Reducose® play a role in promoting GSIS but not enough to show that the content and proportion of 1-deoxynojirimycin and l-leucine play an important role in the GSIS activity of Reducose®.

3.
J Control Release ; 364: 420-434, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37918486

RESUMO

Endogenous stem cell-based in-situ tissue regeneration has recently gained considerable attention. In this study, we investigated the potential of a chemokine, SDF-1-mimic peptide (SMP), to promote endogenous stem cell-based in-situ wound healing. Our approach involved the development of a click crosslinked hyaluronic acid scaffold loaded with SMP (Cx-HA + SMP) to release SMP in a wound site. The Cx-HA scaffold maintained its structural integrity throughout the wound healing process and also captured endogenous stem cells. Gradual SMP release from the Cx-HA + SMP scaffold established a concentration gradient at the wound site. In animal wound experiments, Cx-HA + SMP exhibited faster wound contraction compared to Cx-HA + SDF-1. Additionally, Cx-HA + SMP resulted in approximately 1.2-1.6 times higher collagen formation compared to Cx-HA + SDF-1. SMP released from the Cx-HA + SMP scaffold promoted endogenous stem cell migration to the wound site 1.5 times more effectively than Cx-HA + SDF-1. Moreover, compared to Cx-HA + SDF-1, Cx-HA + SMP exhibited higher expression of CXCR4 and CD31, as well as the positive markers CD29 and CD44 for endogenous stem cells. The endogenous stem cells that migrated through Cx-HA + SMP regenerated into wound skin with minimal scar granule formation, similar to the normal tissue. In conclusion, SMP peptide offers greater convenience, while efficiently attracting migrating endogenous stem cells compared to the SDF protein. Our findings suggest that Cx-HA + SMP scaffolds hold promise as a strategy to enhance endogenous stem cell-based in-situ wound healing.


Assuntos
Ácido Hialurônico , Cicatrização , Animais , Movimento Celular , Células-Tronco/metabolismo , Quimiocina CXCL12
4.
J Med Food ; 26(8): 529-539, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37594559

RESUMO

In this study, we evaluated the effects of Lactobacillus reuteri NCIMB (LRC™) supplementation on hypercholesterolemia by researching its effects on cellular cholesterol metabolism in hypercholesterolemic rats (KHGASP-22-170) and HepG2 cell line. Rats were separated into six groups after adaptation and were then fed a normal control (NC), a high-cholesterol diet (HC), or a HC supplemented with simvastatin 15 mg/kg body weight (positive control [PC]), LRC 1 × 109 colony-forming units (CFU)/rat/day, LRC 4 × 109 CFU/rat/day, or LRC 1 × 1010 CFU/rat/day (1 × 109, 4 × 109, or 1 × 1010). The rats were dissected to study the effects of LRC on cholesterol metabolism and intestinal excretion at the end of experimental period. We discovered that LRC mainly participated in the restraint of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, the uptake of low-density lipoprotein (LDL) cholesterol into tissues, partially in the transport of cholesteryl esters into high density lipoprotein for maturation, and intestinal excretion of cholesterol. These results are supported by the expression of transcription factors and enzymes such as HMG-CoA reductase, SREBP2, CYP7A1, CETP, and LCAT in both messenger RNA (mRNA) and protein levels in serum and hepatic tissue. Furthermore, the LRC treatment in HepG2 significantly reduced the mRNA expression of HMG-CoA reductase, SREBP2, and CEPT and significantly increased the mRNA expression of LDL-receptor, LCAT, and CYP7A1 at all doses. Hence, we suggest that LRC supplementation could alleviate the serum cholesterol level by inhibiting the intracellular cholesterol synthesis, and augmenting excretion of intestinal cholesterol.


Assuntos
Hipercolesterolemia , Limosilactobacillus reuteri , Animais , Ratos , Colesterol , Hipercolesterolemia/tratamento farmacológico , Metabolismo dos Lipídeos , Colesterol 7-alfa-Hidroxilase/genética
5.
J Ginseng Res ; 46(2): 283-289, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35509818

RESUMO

Background: Sarcopenia, defined as loss of muscle mass and strength with age, becomes a public health concern as the elderly population increases. This study aimed to determine whether the mixture of soluble whey protein hydrolysate (WPH) and Panax ginseng berry extract (GBE) has a synergetic effect on sarcopenia and, if so, to identify the relevant mechanisms and optimal mixing ratio. Methods: In the first experiment, C57BL/6 mice were hindlimb immobilized for one-week and then administered WPH 800 mg/kg, GBE 100 mg/kg, WPH 800 mg/kg+ GBE 100 mg/kg mixture, and Fructus Schisandrae extract (SFE) 200 mg/kg for two weeks. In the second experiment, experimental design was same, but mice were administered three different doses of WPH and GBE mixture (WPH 800 mg/kg+ GBE 100 mg/kg, WPH 800 mg/kg+ GBE 90 mg/kg, WPH 1000 mg/kg+ GBE 75 mg/kg). Results: In the first experiment, we confirmed the synergetic effect of WPH and GBE on muscle mass and identified that GBE was more effective on the protein synthesis side, and WPH tended to be slightly more effective for protein degradation. In the second experiment, among three different ratios, the WPH 800 mg/kg+ GBE 100 mg/kg was most effective for muscle mass and strength. The mixtures activated muscle protein synthesis via PI3K/Akt/mTORc1 pathway and inhibited muscle protein degradation via suppressing ubiquitin-proteasome system (UPS) and autophagy-lysosome system (ALS), and these effects were more GBE dose-dependent than WPH. Conclusion: The WPH and GBE mixture having a synergetic effect is a potential agent to prevent sarcopenia.

6.
Nutrients ; 14(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35215448

RESUMO

Sarcopenia is prevalent as the aging population grows. Therefore, the need for supplements for the elderly is increasing. This study aimed to investigate the efficacy and mechanism of a Panax ginseng berry extract (GBE) and soluble whey protein hydrolysate (WPH) mixture on a sarcopenia-related muscular deterioration in aged mice. Ten-month-old male C57BL/6J mice were administered three different doses of the GBE + WPH mixture for 8 weeks; 700 mg/kg, 900 mg/kg, and 1100 mg/kg. Grip strength, serum inflammatory cytokines level, and mass of muscle tissues were estimated. The deteriorating function of aging muscle was investigated via protein or gene expression. Grip strength and mass of three muscle tissues were increased significantly in a dose-dependent manner, and increased anti-inflammatory cytokine alleviated systemic inflammatory state. The mixture resolved the imbalance of muscle protein turnover through activation of the PI3K/Akt pathway and increased gene expression of the muscle regeneration-related factors, while decreasing myostatin, which interferes with muscle protein synthesis and regeneration. Furthermore, we confirmed that increased mitochondria number in muscle with the improvement of mitochondrial biogenesis. These physiological changes were similar to the effects of exercise.


Assuntos
Panax , Sarcopenia , Animais , Frutas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Hidrolisados de Proteína/metabolismo , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/uso terapêutico , Soro do Leite/metabolismo , Proteínas do Soro do Leite/metabolismo , Proteínas do Soro do Leite/farmacologia
7.
Phytomedicine ; 96: 153877, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35026519

RESUMO

BACKGROUND: The incidence of sarcopenic obesity, muscle atrophy induced by obesity, has steadily increased and is emerging as a health problem. Although the anti-obesity effect of Codonopsis lanceolata (CL) is known, its efficacy against sarcopenic obesity has not been studied. PURPOSE: We aimed to investigate the effect of CL on sarcopenic obesity and the changes in the related mechanisms to confirm the potential of CL as an effective natural therapeutic agent for sarcopenic obesity. METHODS: C57BL/6 mice were fed a high-fat diet (HFD) for 9 weeks, and CL was administered for 6 weeks with HFD feeding. Body weight and grip strength were measured twice a week. After sacrifice, muscle fiber histological analysis, blood lipid analysis, muscle triglyceride extraction, western blot, and real-time PCR were performed. High-performance liquid chromatography (HPLC)-electrospray ionization (ESI)-mass spectrometry (MS) analysis and in vitro experiments using C2C12 cells were performed to verify the main and active compounds of CL. Confluent C2C12 cells were differentiated for 4 days, and then the main compound of CL was co-treated with palmitic acid for 24 h. RESULTS: CL reduced body weight, mass of three fat tissues (epididymal fat, mesenteric fat, and perirenal fat), adipocyte cross-sectional area (CSA), and improved insulin signaling. Simultaneously, CL improved grip strength, mass of three muscle tissues (quadriceps, gastrocnemius, and soleus), and muscle fiber CSA. These results were due to the recovery of both the phosphatidylinositol-3-kinase (PI3K)/ protein kinase B (Akt) signaling pathway and lipid metabolisms in skeletal muscle. Lipids accumulated in skeletal muscle interrupt the PI3K/Akt pathway, but CL reduced intramyocellular triglyceride concentration by restoring gene expression of factors related to triglyceride synthesis and fatty acid oxidation. Therefore, the activated PI3K/Akt pathway enhanced muscle protein synthesis by increasing phosphorylation of ribosomal protein S6 kinase 1 and eIF4E-binding protein 1 and suppressed muscle protein degradation by decreasing expression of muscle ring finger-1 and muscle atrophy F-box protein. In addition, tangshenoside I (TS) was verified as the main compound of CL by HPLC-ESI-MS analysis, and its efficacy of inhibiting myotube atrophy and lipid accumulation in myotubes was confirmed, verifying that TS is an active compound. CONCLUSION: CL is an effective natural material for sarcopenic obesity that suppresses muscle atrophy by inhibiting the accumulation of lipids in skeletal muscle through restoration of impaired PI3K/Akt pathway and lipid metabolism.


Assuntos
Codonopsis , Sarcopenia , Animais , Dieta Hiperlipídica/efeitos adversos , Metabolismo dos Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sarcopenia/metabolismo , Sarcopenia/patologia
8.
Oncotarget ; 12(7): 674-685, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33868588

RESUMO

The native hepatocellular cancer (HCC) microenvironment is characterized by more hypoxic, hypoglycemic, and acidic conditions than those used in standard cell culture. This study aimed to investigate whether HCC cells cultured in more native conditions have an altered phenotype and drug sensitivity compared to those cultured in standard conditions. Six HCC cell lines were cultured in "standard" (21% O2, 25 mM glucose) or more "native" (1% O2, 5 mM glucose, 10 mM lactate) conditions. Cells were assessed for growth rates, cell cycle distribution, relevant metabolite and protein levels, genome-wide gene expression, mitochondrial DNA sequence and sensitivity to relevant drugs. Many differences in cellular and molecular phenotypes and drug sensitivity were observed between the cells. HCC cells cultured in native conditions had slower doubling times, increased HK2 and GLUT, lower PHDA and ATP levels, and mutations in mitochondrial DNA. Thirty-one genes, including the hypoxia-associated NDRG1, were differentially expressed between the cells. HCC patients in The Cancer Genome Atlas (TCGA) with tumors with a high score based on these 31 genes had a poorer prognosis than those with a low score (p = 0.002). From 90 comparisons of drug sensitivity, increased resistance and sensitivity for cells cultured in native conditions was observed in 14 (16%) and 8 (9%) comparisons respectively. In conclusion, cells cultured in more native conditions can have a more glycolytic and aggressive phenotype and varied drug sensitivity to those cultured in standard conditions, and may provide new insights to understanding tumor biology and drug development.

9.
J Comp Neurol ; 529(3): 595-604, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32510600

RESUMO

Adult stem cells age during long-term in vitro culture, and neural stem cells (NSCs), which can self-renew and differentiate into neurons and glial cells, also display reduced differentiation potential after repeated passaging. However, the mechanistic details underlying this process remain unclear. In this study, we found that long-term in vitro culture of NSCs resulted in aging-related upregulation of inflammatory- and endoplasmic reticulum (ER) stress-related genes, including the proinflammatory cytokines interleukin (IL)1ß and IL6, the senescence-associated enzyme matrix metallopeptidase 13 (MMP13), and the ER stress-responsive transcription factor activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP). However, the cyclic and transient induction of four reprogramming factors (POU domain, class 5, transcription factor 1, also known as octamer-binding transcription factor 4; SRY [sex determining region Y]-box 2; Kruppel-like factor 4; and myelocytomatosis oncogene; collectively referred to as OSKM) can inhibit NSC aging, as indicated by the decreased expression of the inflammatory and ER stress-related genes. We used ROSA-4F NSCs, which express OSKM from only one allele, to minimize the potential for full reprogramming or tumor formation during NSC rejuvenation. We expect that this novel rejuvenation method will enhance the potential of NSCs as a clinical approach to the treatment of neurological diseases.


Assuntos
Reprogramação Celular/fisiologia , Senescência Celular/fisiologia , Células-Tronco Embrionárias/metabolismo , Mediadores da Inflamação/antagonistas & inibidores , Células-Tronco Neurais/metabolismo , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Estresse do Retículo Endoplasmático/fisiologia , Feminino , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Transgênicos , Gravidez
10.
Stem Cells Dev ; 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32867608

RESUMO

The endometrial cycle in response to hormonal stimulation is essential for implantation. The female has endometrium that repeats this cycle through about half of a lifetime. The cycle includes three phases, proliferative, secretory, and menstrual, and each phase has distinct characteristics. The endometrial stromal cells (EnSCs) in each phase also have specialized characteristics, including cell cycle, morphologies, and cellular metabolic state. So we hypothesized that the cells in each phase have unique mitochondrial morphologies because they are generally linked to cellular metabolic state. To investigate the metabolic characteristics in each phase, we investigated the mitochondrial morphologies by transmission electron microscopy, oxygen consumption rate (OCR), and intracellular adenosine triphosphate (ATP) production. The decidualized EnSCs have shorter mitochondria than those in the proliferative phase. Besides, they also displayed distinct intracellular structural characteristics compared with the proliferative phase, such as ribosome-rich endoplasmic reticulum and increased formation of vesicles. OCR and luminescent ATP detection assay revealed that the basal respiration and ATP production in the decidualized EnSCs were lower than those in the proliferative phase. Thus, we concluded that morphological and intracellular structural changes were induced during the decidualization. Moreover, the decreased mitochondrial length was shown to correlate with decreased dependency on oxidative phosphorylation and ATP concentration in EnSCs.

11.
Stem Cells Int ; 2020: 9369268, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32399055

RESUMO

During embryonic development, cells undergo changes in gene expression, signaling pathway activation/inactivation, metabolism, and intracellular organelle structures, which are mediated by mitochondria. Mitochondria continuously switch their morphology between elongated tubular and fragmented globular via mitochondrial fusion and fission. Mitochondrial fusion is mediated by proteins encoded by Mfn1, Mfn2, and Opa1, whereas mitochondrial fission is mediated by proteins encoded by Fis1 and Dnm1L. Here, we investigated the expression patterns of mitochondria-related genes during the differentiation of mouse embryonic stem cells (ESCs). Pluripotent ESCs maintain stemness in the presence of leukemia inhibitory factor (LIF) via the JAK-STAT3 pathway but lose pluripotency and differentiate in response to the withdrawal of LIF. We analyzed the expression levels of mitochondrial fusion- and fission-related genes during the differentiation of ESCs. We hypothesized that mitochondrial fusion genes would be overexpressed while the fission genes would be downregulated during the differentiation of ESCs. Though the mitochondria exhibited an elongated morphology in ESCs differentiating in response to LIF withdrawal, only the expression of Mfn2 was increased and that of Dnm1L was decreased as expected, the other exceptions being Mfn1, Opa1, and Fis1. Next, by comparing gene expression and mitochondrial morphology, we proposed an index that could precisely represent mitochondrial changes during the differentiation of pluripotent stem cells by analyzing the expression ratios of three fusion- and two fission-related genes. Surprisingly, increased Mfn2/Dnm1L ratio was correlated with elongation of mitochondria during the differentiation of ESCs. Moreover, application of this index to other specialized cell types revealed that neural stems cells (NSCs) and mouse embryonic fibroblasts (MEFs) showed increased Mfn2/Dnm1L ratio compared to ESCs. Thus, we suggest that the Mfn2/Dnm1L ratio could reflect changes in mitochondrial morphology according to the extent of differentiation.

12.
Oncotarget ; 8(66): 110133-110144, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29299135

RESUMO

Acquired resistance (AQR) to drug treatment occurs frequently in cancer patients and remains an impediment to successful therapy. The aim of this study was to gain insight into how AQR arises following the application of PI3K/mTOR inhibitors. H1975 lung cancer cells with EGFR T790M mutations that confer resistance to EGFR inhibitors underwent prolonged treatment with the PI3K/mTOR inhibitor, BEZ235. Monoclonal cells with stable and increased resistance to BEZ235 were obtained after 8 months treatment. These AQR clones showed class-specific resistance to PI3K/mTOR inhibitors, reduced G1 cell cycle arrest and impedance of migration following PI3K/mTOR inhibition, reduced PTEN expression and increased Akt and S6RP phosphorylation. Transcriptome analysis revealed the AQR clones had increased expression of the metabolite transporters SLC16A9 and SLC16A7, suggestive of altered cell metabolism. Subsequent experiments revealed that AQR clones possess features consistent with elevated glycolysis, including increased levels of glucose, lactate, glutamine, glucose dependence, GLUT1 expression, and rates of post-glucose extracellular acidification, and decreased levels of reactive oxygen species and rates of oxygen consumption. Combination treatment of BEZ235 with the glycolysis inhibitor 3-bromopyruvate was synergistic in AQR clones, but only additive in parental cells. DNA sequencing revealed the presence of a mitochondrial DNA (mtDNA) MT-C01 variant in AQR but not parental cells. Depletion of mitochondrial DNA in parental cells induced resistance to BEZ235 and other PI3K/mTOR inhibitors, and was accompanied by increased glycolysis. The results of this study provide the first evidence that a metabolic switch associated with mtDNA mutation can be an underlying mechanism for AQR.

13.
Nephron Clin Pract ; 123(3-4): 165-72, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23921088

RESUMO

BACKGROUND: The aim of the present study was to compare levels of fetuin-A, osteoprotegerin (OPG), and heat shock protein (HSP)70 according to the stage of chronic kidney disease (CKD), as well as to evaluate the association between serum fetuin-A, OPG, and HSP70 concentrations with respect to vascular stiffness and calcification in hemodialysis (HD) patients. METHODS: We measured fetuin-A, OPG, and HSP70 in 35 healthy controls, 35 patients with stage 3 CKD, 35 patients with stage 4 CKD, and 81 HD patients. Using these data, we studied the association of fetuin-A, OPG, and HSP70 with clinical, biochemical, and vascular measures in HD patients. RESULTS: Levels of OPG and HSP70 were higher and fetuin-A was lower in HD patients than in healthy controls. The cardio-ankle vascular index (CAVI) showed a positive correlation with OPG (r = 0.248, p = 0.040) and the OPG/fetuin-A ratio (r = 0.260, p = 0.031). The ankle-brachial index (ABI) showed a negative correlation with OPG (r = -0.245, p = 0.031) and the OPG/fetuin-A ratio (r = -0.267, p = 0.018). Intima-media thickness (IMT) showed a positive correlation with OPG (r = 0.273, p = 0.014) and the OPG/fetuin-A ratio (r = 0.269, p = 0.015). On stepwise multiple linear regression analyses, only the logarithmic function of the OPG/fetuin-A ratio was independently associated with CAVI (ß = 13.325, SE = 6.247, p = 0.038). CONCLUSIONS: Our results demonstrate that OPG and the OPG/fetuin-A ratio are correlated with increased vascular stiffness and IMT in HD patients. In addition, the OPG/fetuin-A ratio was independently associated with vascular stiffness in HD patients.


Assuntos
Falência Renal Crônica/sangue , Osteoprotegerina/sangue , Diálise Renal , Rigidez Vascular , alfa-2-Glicoproteína-HS/análise , Idoso , Espessura Intima-Media Carotídea , Feminino , Proteínas de Choque Térmico HSP70/sangue , Humanos , Masculino , Pessoa de Meia-Idade
14.
PLoS One ; 8(5): e63514, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23717441

RESUMO

Human papillomavirus (HPV) is the most important causative agent of cervical cancers worldwide. However, our understanding of how the vaginal microbiota might be associated with HPV infection is limited. In addition, the influence of human genetic and physiological factors on the vaginal microbiota is unclear. Studies on twins and their families provide the ideal settings to investigate the complicated nature of human microbiota. This study investigated the vaginal microbiota of 68 HPV-infected or uninfected female twins and their families using 454-pyrosequencing analysis targeting the variable region (V2-V3) of the bacterial 16S rRNA gene. Analysis of the vaginal microbiota from both premenopausal women and HPV-discordant twins indicated that HPV-positive women had significantly higher microbial diversity with a lower proportion of Lactobacillus spp. than HPV-negative women. Fusobacteria, including Sneathia spp., were identified as a possible microbiological marker associated with HPV infection. The vaginal microbiotas of twin pairs were significantly more similar to each other than to those from unrelated individuals. In addition, there were marked significant differences from those of their mother, possibly due to differences in menopausal status. Postmenopausal women had a lower proportion of Lactobacillus spp. and a significantly higher microbiota diversity. This study indicated that HPV infection was associated with the composition of the vaginal microbiota, which is influenced by multiple host factors such as genetics and menopause. The potential biological markers identified in this study could provide insight into HPV pathogenesis and may represent biological targets for diagnostics.


Assuntos
Infecções por Papillomavirus/etiologia , Infecções por Papillomavirus/microbiologia , Vagina/microbiologia , Vagina/virologia , Adulto , Idoso , DNA Bacteriano/genética , Feminino , Humanos , Coreia (Geográfico) , Microbiota/genética , Pessoa de Meia-Idade , Papillomaviridae , Infecções por Papillomavirus/virologia , Pós-Menopausa/fisiologia , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...